Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 740
Filtrar
1.
Chem Biodivers ; 21(2): e202301656, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38217357

RESUMO

Aconitum spp. are important medicinal plants mentioned in Ayurveda as Ativisa or Vatsanabha. The present study aims to evaluate anti-rheumatic potential in seven Aconitum species and correlation with aconitine and hypaconitine content. Anti-rheumatic potential was analyzed through in vitro xanthine oxidase inhibition, anti-inflammatory and ROS scavenging assays; and quantification of aconitine and hypaconitine with RP-HPLC method validated as per ICH guidelines. The findings reveal that A. palmatum possessed the most promising response (IC50 =12.68±0.15 µg/ml) followed by A. ferox (IC50 =12.912±1.87 µg/ml) for xanthin oxidase inhibition. We observed a wide variation in aconitine and hypaconitine content ranging from 0.018 %-1.37 % and 0.0051 %-0.077 % respectively on dry weight basis. Aconitine and hypaconitine showed moderate positive correlation (r=0.68 and 0.59 respectively) with anti-rheumatic potential. The study identifies potential alternative species of Aconitum that can help in sustainable availability of quality raw material.


Assuntos
Aconitina/análogos & derivados , Aconitum , Medicamentos de Ervas Chinesas , Aconitina/farmacologia , Aconitina/análise , Siquim , 60479 , Cromatografia Líquida de Alta Pressão/métodos , Índia
2.
Mini Rev Med Chem ; 24(2): 159-175, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-36994982

RESUMO

Compounds from plants that are used in traditional medicine may have medicinal properties. It is well known that plants belonging to the genus Aconitum are highly poisonous. Utilizing substances derived from Aconitum sp. has been linked to negative effects. In addition to their toxicity, the natural substances derived from Aconitum species may have a range of biological effects on humans, such as analgesic, anti-inflammatory, and anti-cancer characteristics. Multiple in silico, in vitro, and in vivo studies have demonstrated the effectiveness of their therapeutic effects. In this review, the clinical effects of natural compounds extracted from Aconitum sp., focusing on aconitelike alkaloids, are investigated particularly by bioinformatics tools, such as the quantitative structure- activity relationship method, molecular docking, and predicted pharmacokinetic and pharmacodynamic profiles. The experimental and bioinformatics aspects of aconitine's pharmacogenomic profile are discussed. Our review could help shed light on the molecular mechanisms of Aconitum sp. compounds. The effects of several aconite-like alkaloids, such as aconitine, methyllycacintine, or hypaconitine, on specific molecular targets, including voltage-gated sodium channels, CAMK2A and CAMK2G during anesthesia, or BCL2, BCL-XP, and PARP-1 receptors during cancer therapy, are evaluated. According to the reviewed literature, aconite and aconite derivatives have a high affinity for the PARP-1 receptor. The toxicity estimations for aconitine indicate hepatotoxicity and hERG II inhibitor activity; however, this compound is not predicted to be AMES toxic or an hERG I inhibitor. The efficacy of aconitine and its derivatives in treating many illnesses has been proven experimentally. Toxicity occurs as a result of the high ingested dose; however, the usage of this drug in future research is based on the small quantity of an active compound that fulfills a therapeutic role.


Assuntos
Aconitum , Alcaloides , Medicamentos de Ervas Chinesas , Humanos , Aconitina/farmacologia , Simulação de Acoplamento Molecular , Inibidores de Poli(ADP-Ribose) Polimerases , Alcaloides/farmacologia , Alcaloides/uso terapêutico
3.
Molecules ; 28(21)2023 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-37959836

RESUMO

Malignant cardiac arrhythmias with high morbidity and mortality have posed a significant threat to our human health. Scutellarein, a metabolite of Scutellarin which is isolated from Scutellaria altissima L., presents excellent therapeutic effects on cardiovascular diseases and could further be metabolized into methylated forms. A series of 22 new scutellarein derivatives with hydroxyl-substitution based on the scutellarin metabolite in vivo was designed, synthesized via the conjugation of the scutellarein scaffold with pharmacophores of FDA-approved antiarrhythmic medications and evaluated for their antiarrhythmic activity through the analyzation of the rat number of arrhythmia recovery, corresponding to the recovery time and maintenance time in the rat model of barium chloride-induced arrhythmia, as well as the cumulative dosage of aconitine required to induce VP, VT, VF and CA in the rat model of aconitine-induced arrhythmia. All designed compounds could shorten the time of the arrhythmia continuum induced by barium chloride, indicating that 4'-hydroxy substituents of scutellarein had rapid-onset antiarrhythmic effects. In addition, nearly all of the compounds could normalize the HR, RR, QRS, QT and QTc interval, as well as the P/T waves' amplitude. The most promising compound 10e showed the best antiarrhythmic activity with long-term efficacy and extremely low cytotoxicity, better than the positive control scutellarein. This result was also approved by the computational docking simulation. Most importantly, patch clamp measurements on Nav1.5 and Cav1.2 channels indicated that compound 10e was able to reduce the INa and ICa in a concentration-dependent manner and left-shifted the inactivation curve of Nav1.5. Taken together, all compounds were considered to be antiarrhythmic. Compound 10e even showed no proarrhythmic effect and could be classified as Ib Vaughan Williams antiarrhythmic agents. What is more, compound 10e did not block the hERG potassium channel which highly associated with cardiotoxicity.


Assuntos
Aconitina , Antiarrítmicos , Ratos , Humanos , Animais , Aconitina/farmacologia , Antiarrítmicos/efeitos adversos , Arritmias Cardíacas/induzido quimicamente , Arritmias Cardíacas/tratamento farmacológico
4.
Pflugers Arch ; 475(11): 1301-1314, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37707585

RESUMO

Aconitine is a sodium channel opener, but its effects on the respiratory center are not well understood. We investigated the dose-dependent effects of aconitine on central respiratory activity in brainstem-spinal cord preparations isolated from newborn rats. Bath application of 0.5-5 µM aconitine caused an increase in respiratory rhythm and decrease in the inspiratory burst amplitude of the fourth cervical ventral root (C4). Separate application of aconitine revealed that medullary neurons were responsible for the respiratory rhythm increase, and neurons in both the medulla and spinal cord were involved in the decrease of C4 amplitude by aconitine. A local anesthetic, lidocaine (100 µM), or a voltage-dependent sodium channel blocker, tetrodotoxin (0.1 µM), partially antagonized the C4 amplitude decrease by aconitine. Tetrodotoxin treatment tentatively decreased the respiratory rhythm, but lidocaine tended to further increase the rhythm. Treatment with 100 µM riluzole or 100 µM flufenamic acid, which are known to inhibit respiratory pacemaker activity, did not reduce the respiratory rhythm enhanced by aconitine + lidocaine. The application of 1 µM aconitine depolarized the preinspiratory, expiratory, and inspiratory motor neurons. The facilitated burst rhythm of inspiratory neurons after aconitine disappeared in a low Ca2+/high Mg2+ synaptic blockade solution. We showed the dose-dependent effects of aconitine on respiratory activity. The antagonists reversed the depressive effects of aconitine in different manners, possibly due to their actions on different sites of sodium channels. The burst-generating pacemaker properties of neurons may not be involved in the generation of the facilitated rhythm after aconitine treatment.


Assuntos
Aconitina , Tronco Encefálico , Animais , Ratos , Animais Recém-Nascidos , Aconitina/farmacologia , Tetrodotoxina/farmacologia , Ratos Wistar , Bulbo/fisiologia , Medula Espinal , Lidocaína/farmacologia
5.
Molecules ; 28(10)2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37241973

RESUMO

Diterpenoid alkaloids, originating from the amination of natural tetracyclic diterpenes, have long interested scientists due to their medicinal uses and infamous toxicity which has limited the clinical application of the native compound. Alkaloid lappaconitine extracted from various Aconitum and Delphinium species has displayed extensive bioactivities and active ongoing research to reduce its adverse effects. A convenient route to construct hybrid molecules containing diterpenoid alkaloid lappaconitine and 3H-1,5-benzodiazepine fragments was proposed. The key stage involved the formation of 5'-alkynone-lappaconitines in situ by acyl Sonogashira coupling of 5'-ethynyllappaconitine, followed by cyclocondensation with o-phenylenediamine. New hybrid compounds showed low toxicity and outstanding analgesic activity in experimental pain models, which depended on the nature of the substituent in the benzodiazepine nucleus. An analogous dependence was also shown for the antiarrhythmic activity in the epinephrine arrhythmia test in vivo. Studies on the isolated atrium have shown that the mechanism of action of the new compounds is included the blockade of beta-adrenergic receptors and potassium channels. Molecular docking analysis was conducted to determine the binding potential of target molecules with the voltage-gated sodium channel NaV1.5. All obtained results provide a basis for future rational modifications of lappaconitine, reducing side effects, while retaining its therapeutic effects.


Assuntos
Aconitum , Alcaloides , Diterpenos , Simulação de Acoplamento Molecular , Benzodiazepinas , Aconitina/farmacologia , Alcaloides/química , Diterpenos/química , Estrutura Molecular , Aconitum/química
6.
Bioorg Chem ; 135: 106501, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37015152

RESUMO

As one of the most common malignancies in female dogs, no drugs have been developed specifically for the treatment of canine mammary carcinoma. In our previous study, a series of diterpenoid alkaloids derivatives were synthesized and exhibited good anti-proliferative activity in vitro against both normal and adriamycin-resistant human breast cancer cells lines. In this study, a series of structurally diverse aconitine-type alkaloids derivatives were also synthesized basing on the minimal modification principle, by modifying on A-ring, C-ring, D-ring, N-atom or salt formation on aconitine skeleton. Their anti-proliferative effects and mechanism on canine mammary cancer cells were investigated, exhibiting the importance of the substitution at A ring, the long chain ester at the C8, the hydroxyl group at the C13, the phenyl ring at the C14 and the N-ethyl group, while the methoxy group at the C1 and C16 showed little effect on the activity. The results of the proliferation, apoptosis and ultrastructure tests of the treated canine mammary carcinoma cells referred that the representative compound, aconitine linoleate (25) could block the cell cycle of canine mammary carcinoma cells in the G0/G1 phase, and exhibit the anti-proliferative effect by inducing apoptosis.


Assuntos
Alcaloides , Neoplasias da Mama , Carcinoma , Diterpenos , Cães , Animais , Feminino , Humanos , Aconitina/farmacologia , Aconitina/química , Neoplasias da Mama/tratamento farmacológico , Alcaloides/farmacologia , Alcaloides/química , Diterpenos/farmacologia , Diterpenos/química
7.
Phytomedicine ; 112: 154688, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36738478

RESUMO

BACKGROUND: Sophoridine (SR) has shown the potential to be an antiarrhythmic agent. However, SR's electrophysiological properties and druggability research are relatively inadequate, which limits the development of SR as an antiarrhythmic candidate. PURPOSE: To facilitate the development process of SR as an antiarrhythmic candidate, we performed integrated studies on the electrophysiological properties of SR in vitro and ex vivo to gain more comprehensive insights into the multi-ion channel blocking effects of SR, which provided the foundation for the further drugability studies in antiarrhythmic and safety studies. Firstly, SR's electrophysiological properties and antiarrhythmic potentials were recorded and assessed at the cell and tissue levels by comprehensively integrating the patch clamp with the Electrical and Optical Mapping systems. Subsequently, the antiarrhythmic effects of SR were validated by aconitine and ouabain-induced arrhythmia in vivo. Finally, the safety of SR as an antiarrhythmic candidate compound was evaluated based on the guidelines of the Comprehensive in Vitro Proarrhythmia Assay (CiPA). STUDY DESIGN: The antiarrhythmic effect of SR was evaluated at the in vitro, ex vivo, and in vivo levels. METHODS: Isolated primary cardiomyocytes and stable cell lines were prepared to explore the electrophysiologic properties of being a multiple ion-channel blocker in vitro by whole-cell patch clamp. Using electrical and optical mapping, the negative chronotropic effect of SR was determined in langendorff-perfused rat or guinea-pig hearts.The antiarrhythmic activity of SR was assessed by the ex vivo tachyarrhythmia models induced by left coronary artery ligation (LCAL) and isoproterenol (ISO). Canonical models of aconitine and ouabain-induced arrhythmia were used to verify the antiarrhythmic effects in vivo. Finally, the pro-arrhythmic risk of SR was detected in Human-Induced Pluripotent Stem Cell-Derived Cardiomyocytes (hSCCMs) using a Microelectrode array (MEA). RESULTS: Single-cell patch assay validated the multiple ion-channel blockers of SR in transient outward current potassium currents (Ito), l-type calcium currents (ICa-l), and rapid activation delayed rectifier potassium currents (IKr). SR ex vivo depressed heart rates (HR) and ventricular conduction velocity (CV) and prolonged Q-T intervals in a concentration-dependent manner. Consistent with the changes in HRs, SR extended the active time of hearts and increased the action potential duration measured at 90% repolarization (APD90). SR could also significantly lengthen the onset time and curtail the duration of spontaneous ventricular tachycardia (VT) in the ex vivo arrhythmic model induced by LCAL. Meanwhile, SR could also significantly upregulate the programmed electrical stimulation (PES) frequency after the ISO challenge in forming electrical alternans and re-entrant excitation. Furthermore, SR exerted antiarrhythmic effects in the tachyarrhythmia models induced by aconitine and ouabain in vivo. Notably, the pro-arrhythmic risk of SR was shallow for a moderate inhibition of the human ether-à-go-go-related gene (hERG) channel. Moreover, SR prolonged field potential duration (FPDc) of hSCCMs in a concentration-dependent manner without early after depolarization (EAD) and arrhythmia occurrence. CONCLUSION: Our results indicated that SR manifested as a multiple ion-channel blocker in the electrophysiological properties and exerts antiarrhythmic effects ex vivo and in vivo. Meanwhile, due to the low pro-arrhythmic risk in the hERG inhibition assay and the induction of EAD, SR has great potential as a leading candidate in the treatment of ventricular tachyarrhythmia.


Assuntos
Antiarrítmicos , Matrinas , Ratos , Humanos , Animais , Cobaias , Antiarrítmicos/efeitos adversos , Ouabaína/metabolismo , Ouabaína/farmacologia , Ouabaína/uso terapêutico , Aconitina/farmacologia , Arritmias Cardíacas/induzido quimicamente , Arritmias Cardíacas/tratamento farmacológico , Canais Iônicos/metabolismo , Canais Iônicos/farmacologia , Miócitos Cardíacos , Isoproterenol , Potássio/metabolismo , Potássio/farmacologia , Potássio/uso terapêutico , Potenciais de Ação/fisiologia
8.
J Asian Nat Prod Res ; 25(2): 132-138, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35574919

RESUMO

A phytochemical investigation on the roots of Aconitum austroyunnanense afforded three undescribed aconitine-type C19-diterpenoid alkaloids, austroyunnanines A-C (1-3). Structural elucidation of all the compounds were performed by spectral methods such as 1 D and 2 D (1H-1H COSY, HMQC, and HMBC) NMR spectroscopy. The isolated alkaloids were tested in vivo for their antinociceptive properties. Consequently, austroyunnanine B (2) exhibited significant antinociceptive effect and its ID50 value (48.0 µmol/kg) was 2-fold less than those of the positive control drugs aspirin and acetaminophen.


Assuntos
Aconitum , Alcaloides , Diterpenos , Aconitum/química , Alcaloides/química , Aconitina/farmacologia , Aconitina/química , Diterpenos/farmacologia , Diterpenos/química , Raízes de Plantas/química , Analgésicos/farmacologia , Estrutura Molecular
9.
J Ethnopharmacol ; 302(Pt A): 115915, 2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36375646

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Tiebangchui (TBC, dried roots of Aconitum pendulum Busch. and Aconitum flavum Hand.-Mazz.) is a well-known Tibetan medicine for dispelling cold and relieving pain. In China, it is widely used in prevention and treatment of various diseases, such as rheumatoid arthritis (RA), traumatic injury, and fracture. However, its cardiotoxicity and neurotoxicity seriously restrict its clinical application. Traditionally, Hezi (HZ, dry ripe fruit of Terminalia chebula Retz. and Terminalia chebula Retz. var. tomentella Kurt.) is generally used in combination with TBC for the purpose of toxicity reducing and efficacy enhancing, but so far we still can't clearly elucidate the compatibility effect and mechanism of the classical herbal pair. AIM OF STUDY: To investigate the compatibility effect and mechanism of TBC co-administered with HZ. METHODS: In the present study, we clarified the cardioprotective role of HZ on the cardiotoxicity induced by TBC. The electrocardiogram, the levels of serum cardiac troponin T (cTnT), the activities of cardiac superoxide dismutase (SOD), malonaldehyde (MDA), and histopathology of heart tissue have been determined in each group. Meanwhile, the anti-RA effect of each group was investigated by paw swelling measurement and histopathological examination of synovial. To explore the underlying mechanism, we performed the pharmacokinetic studies of aconitine (AC) and deoxyaconitine (DE) in TBC group and TBC + HZ group by ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS) system. RESULTS: TBC co-administered with HZ could significantly inhibit the increased heart rate and the prolonged QTc interval induced by TBC (p < 0.01). And TBC + HZ group had lower levels of serum cTnT, cardiac MDA, and higher levels of cardiac SOD compared with TBC group (p < 0.01). In addition, the combination of TBC and HZ could preserve the anti-RA effect of TBC. Both TBC administration alone and TBC + HZ combination administration could effectively alleviate the paw swelling (p < 0.01). Furthermore, TBC co-administered with HZ could significantly decrease the area under the concentration-time curve (AUC(0-∞)) and maximum concentration (Cmax) of AC and DE comapred with TBC administration alone (p < 0.01 or p < 0.05). Meanwhile, it was observed that the time to reach the peak concentration (Tmax), elimination half-life (t1/2), mean retention time (MRT) of AC and DE in TBC group were significantly higher than those in TBC + HZ group (p < 0.01 or p < 0.05). CONCLUSIONS: TBC co-administered with HZ could reduce TBC-induced cardiotoxicty and preserve its anti-RA efficacy. The underlying mechanism is associated with the change of pharmacokinetic process of AC and DE.


Assuntos
Aconitum , Artrite Reumatoide , Cardiotoxicidade , Medicamentos de Ervas Chinesas , Animais , Ratos , Aconitina/farmacologia , Aconitum/química , Artrite Reumatoide/tratamento farmacológico , Cromatografia Líquida , Extratos Vegetais/farmacologia , Ratos Sprague-Dawley , Superóxido Dismutase , Espectrometria de Massas em Tandem , Medicamentos de Ervas Chinesas/efeitos adversos , Medicamentos de Ervas Chinesas/uso terapêutico
10.
Pestic Biochem Physiol ; 186: 105171, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35973763

RESUMO

We explored the potential of two sodium channel activators, veratrine and aconitine, as both insecticides and synergists of natural pyrethrins (NP) on Aedes aegypti adults and larvae. Aconitine was more toxic than veratrine, with an LD50 of 157 ng/mg compared to 376 ng/mg, on the pyrethroid-susceptible Orlando strain, but only aconitine showed significant resistance in the pyrethroid-resistant Puerto Rico strain (RR = 14.6 in topical application and 8.8 in larval bioassay). When applied in mixtures with piperonyl butoxide (PBO) and NP, large synergism values were obtained on the Orlando strain. Aconitine + PBO mixture synergized NP 21.8-fold via topical adult application and 10.2-fold in larval bioassays, whereas veratrine + PBO synergized NP 5.3-fold via topical application and 30.5-fold in larval bioassays. Less synergism of NP was observed on the resistant Puerto Rico strain, with acontine + PBO synergizing NP only 4.1-fold in topical application (8-fold in larval bioassays) and veratrine + PBO synergizing NP 9.5-fold in topical application (13.3-fold in larval bioassays). When alkaloids were applied directly to the mosquito larval nervous system, veratrine was nearly equipotent on both strains, while aconitine was less active on pyrethroid-resistant nerve preparations (no block at 10 µM compared to block at 1 µM on the susceptible strain). The nerve blocking effect of NP was significantly synergized by both compounds on the pyrethroid-susceptible strain by about 10-fold, however only veratrine synergized NP block on the pyrethroid-resistant strain, also showing 10-fold synergism). These results highlight the potential of site II sodium channel activators as insecticides and their ability to synergize pyrethroids, which may extend the commercial lifetime of these chemistries so essential to public health vector control.


Assuntos
Inseticidas , Piretrinas , Agonistas de Canais de Sódio , Aconitina/farmacologia , Aedes/efeitos dos fármacos , Animais , Resistência a Inseticidas , Inseticidas/farmacologia , Larva/efeitos dos fármacos , Controle de Mosquitos/métodos , Butóxido de Piperonila/farmacologia , Piretrinas/farmacologia , Agonistas de Canais de Sódio/farmacologia , Veratrina/farmacologia
11.
Biomed Res Int ; 2022: 4336870, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35915792

RESUMO

Background: Danhong injection (DHI) is widely used in the treatment of cardiovascular and cerebrovascular diseases, and its safety and effectiveness have been widely recognized and applied in China. However, the potential molecular mechanism of action for the treatment of arrhythmia is not fully understood. Aim: In this study, through network pharmacology and in vitro cell experiments, we explored the active compounds of DHI for the treatment of arrhythmia and predicted the potential targets of the drug to investigate its mechanism of action. Materials and Methods: First, the potential therapeutic effect of DHI on arrhythmia was investigated in an in vitro arrhythmia model using human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs), in which calcium transients were recorded to evaluate the status of arrhythmia. Next, the active compounds and key targets in the treatment of arrhythmia were identified through network pharmacology and molecular docking, and the key signaling pathways related to the treatment of arrhythmia were analyzed. Furthermore, we used real-time quantitative reverse transcription PCR (qRT-PCR) to verify the expression levels of key genes. Results: Early afterdepolarizations (EADs) were observed during aconitine treatment in hiPSC-CMs, and the proarrhythmic effect of aconitine was partially rescued by DHI, indicating that the antiarrhythmic role of DHI was verified in an in vitro human cardiomyocyte model. To further dissect the underlying molecular basis of this observation, network pharmacology analysis was performed, and the results showed that there were 108 crosstargets between DHI and arrhythmia. Moreover, 30 of these targets, such as AKT1 and HMOX1, were key genes. In addition, the mRNA expression of AKT1 and HMOX1 could be regulated by DHI. Conclusion: DHI can alleviate aconitine-induced arrhythmia in an in vitro model, presumably because of its multitarget regulatory mechanism. Key genes, such as AKT1 and HMOX1, may contribute to the antiarrhythmic role of DHI in the heart.


Assuntos
Medicamentos de Ervas Chinesas , Células-Tronco Pluripotentes Induzidas , Aconitina/farmacologia , Arritmias Cardíacas/tratamento farmacológico , Medicamentos de Ervas Chinesas/uso terapêutico , Humanos , Simulação de Acoplamento Molecular , Farmacologia em Rede
12.
Molecules ; 27(13)2022 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-35807297

RESUMO

Aconiti Lateralis Radix Praeparata (Fu Zi) is the processed lateral root of Aconitum carmichaelii Debx, which is widely used in emergency clinics. Poisoning incidents and adverse reactions occur with the improper intake of Fu Zi. Metabolic characteristics of aconitum alkaloids of Fu Zi may vary, and the effects of Fu Zi in healthy and Long QT syndrome (LQTS) patients is unknown. In this experiment, 24 Sprague Dawley rats were randomly divided into three groups: 2.0, 1.0, and 0.5 g/kg dose groups, and blood samples were collected after the oral administration of Fu Zi extract. We used an ultra-high performance liquid chromatography-tandem mass spectrometry system to detect the concentrations of six aconitum alkaloids. Cell toxicity, calcium imaging, and patch-clamp recordings of human induced pluripotent stem cells-cardiomyocytes (hiPSC-CMs) of aconitine in healthy and LQTS were observed. We found that the AUC(0-48h), Cmax, and t1/2 of the six compounds increased with the multiplicative dosages; those in the high group were significantly higher than those in the low group. Aconitine concentration-dependently decreased the amplitude, which has no significant effect on the cell index of normal hiPSC-CMs. Aconitine at 5.0 µM decreased the cell index between 5-30 min for LQTS hiPSC-CMs. Meanwhile, aconitine significantly increased the frequency of calcium transients in LQTS at 5 µM. Aconitine significantly shortened the action potential duration of human cardiomyocytes in both normal and LQTS groups. These results show metabolic behaviors of aconitum alkaloids in different concentrations of Fu Zi and effects of aconitine in healthy and LQTS patients.


Assuntos
Aconitum , Alcaloides , Medicamentos de Ervas Chinesas , Células-Tronco Pluripotentes Induzidas , Síndrome do QT Longo , Aconitina/farmacologia , Aconitum/química , Alcaloides/análise , Alcaloides/farmacologia , Animais , Cálcio , Cromatografia Líquida de Alta Pressão/métodos , Medicamentos de Ervas Chinesas/química , Humanos , Síndrome do QT Longo/induzido quimicamente , Miócitos Cardíacos , Ratos , Ratos Sprague-Dawley
13.
PLoS One ; 17(6): e0270069, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35759460

RESUMO

Aconitum, as "the first drug of choice for invigorating Yang and saving lives", has been widely used for the treatment of heart failure. However, toxic components of Aconitum can easily lead to serious arrhythmia, even death (Y. CT., 2009; Zhang XM., 2018). In this study, a High Performance Liquid Chromatography (HPLC) method for the determination of aconitine (AC), mesaconitine (MA) and hypaconitine (HA) was established; The effect of Glycyrrhiza on CYP3A1 / 2 mRNA expression was detected by RT-PCR; SD rats were given Aconitum and compatibility of Glycyrrhizae and Aconitum by gavage respectively, the blood concentration of toxic components were determined by LC-MS / MS; The CHF rat model was established by intraperitoneal injection of adriamycin (2.5 mg / kg), and were randomly divided into model, Aconitum, the compatibility of Glycyrrhizae and Aconitum and Captopril group, 5 mice/group. After 4 weeks of gavage, the corresponding indexes were detected by ELISA and HPLC. The results showed that Ketoconazole significantly inhibited the metabolites of AC, MA and HA; Glycyrrhiza induced CYP3A gene expression; The level of ALD in the compatibility of Glycyrrhizae and Aconitum group was significantly lower than that in Aconitum group. After intervention with the compatibility of Glycyrrhizae and Aconitum, ATP increased, ADP decreased significantly. In conclusion, we found Glycyrrhiza promoted the metabolism of toxic components of Aconitum by up regulating the expression of CYP3A, and reduced the content of BNP, Ang II and ALD, improved the energy metabolism disorder of myocardium, alleviated the development of CHF.


Assuntos
Aconitum , Medicamentos de Ervas Chinesas , Glycyrrhiza uralensis , Insuficiência Cardíaca , Aconitina/farmacologia , Aconitum/metabolismo , Aconitum/toxicidade , Animais , Cromatografia Líquida de Alta Pressão/métodos , Citocromo P-450 CYP3A/genética , Medicamentos de Ervas Chinesas/farmacologia , Glycyrrhiza uralensis/metabolismo , Insuficiência Cardíaca/prevenção & controle , Camundongos , Extratos Vegetais/farmacologia , Ratos , Ratos Sprague-Dawley
14.
Neurotoxicology ; 91: 218-227, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35643327

RESUMO

The inhibition of the excessive release of glutamate in the brain has emerged as a promising new option for developing therapeutic strategies for neurodegenerative disorders. This study investigated the effect and mechanism of lappaconitine, a diterpenoid alkaloid found in species of Aconitum, on glutamate release in rat cerebral cortex nerve terminals (synaptosomes). Here, we report that in the rat cortical synaptosomal preparation, lappaconitine reduced the K+ channel blocker 4-aminopyridine (4-AP)-evoked Ca2+-dependent release of glutamate. The inhibitory effect of lappaconitine on the evoked glutamate release was blocked by the vesicular transporter inhibitor bafilomycin A1 and calcium-chelating agent ethylene glycol tetraacetic acid (EGTA), but was unaffected by exposure to the glutamate transporter inhibitor dl-threo-beta-benzyloxyaspartate (dl-TBOA). The depolarization-induced elevation of cytosolic calcium concentration ([Ca2+]c) was inhibited by lappaconitine, while the 4-AP-mediated depolarization of the synaptosomal membrane potential was not affected. The inhibition of glutamate release by lappaconitine was markedly decreased in synaptosomes pretreated with the Cav2.3 (R-type) channel blocker SNX-482 or the protein kinase A inhibitor H89. Nevertheless, the lappaconitine-mediated inhibition of glutamate release was not abolished by the intracellular Ca2+-release inhibitors dantrolene and CGP37157. Lappaconitine also significantly decreased the 4-AP-induced phosphorylation of PKA and SNAP-25, a presynaptic substrate for PKA. Our data suggest that lappaconitine reduces Ca2+ influx through R-type Ca2+ channels, subsequently reducing the protein kinase A cascade to inhibit the evoked glutamate release from rat cerebral cortex nerve terminals.


Assuntos
Aconitina , Cálcio , Proteínas Quinases Dependentes de AMP Cíclico , Ácido Glutâmico , 4-Aminopiridina/metabolismo , 4-Aminopiridina/farmacologia , Aconitina/análogos & derivados , Aconitina/farmacologia , Animais , Cálcio/metabolismo , Córtex Cerebral/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/efeitos dos fármacos , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Ácido Glutâmico/metabolismo , Terminações Pré-Sinápticas/metabolismo , Ratos , Ratos Sprague-Dawley , Sinaptossomos
15.
Chin J Integr Med ; 28(8): 693-701, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35723815

RESUMO

OBJECTIVE: To explore the synergic mechanism of ginsenoside Rg1 (Rg1) and aconitine (AC) by acting on normal neonatal rat cardiomyocytes (NRCMs) and pentobarbital sodium (PS)-induced damaged NRCMs. METHODS: The toxic, non-toxic, and effective doses of AC and the most suitable compatibility concentration of Rg1 for both normal and damaged NRCMs exposed for 1 h were filtered out by 3- (4,5)-dimethylthiahiazo (-z-y1)-3,5-diphenytetrazoliumromide, respectively. Then, normal NRCMs or impaired NRCMs were treated with chosen concentrations of AC alone or in combination with Rg1 for 1 h, and the cellular activity, cellular ultrastructure, apoptosis, leakage of acid phosphatase (ACP) and lactate dehydrogenase (LDH), intracellular sodium ions [Na+], potassium ions [K+] and calcium ions [Ca2+] levels, and Nav1.5, Kv4.2, and RyR2 genes expressions in each group were examined. RESULTS: For normal NRCMs, 3000 µ mol/L AC significantly inhibited cell viability (P<0.01), promoted cell apoptosis, and damaged cell structures (P<0.05), while other doses of AC lower than 3000 µ mol/L and the combinations of AC and Rg1 had little toxicity on NRCMs. Compared with AC acting on NRCMs alone, the co-treatment of 3000 and 10 µ mol/L AC with 1 µ mol/L Rg1 significantly decreased the level of intracellular Ca2+ (P<0.01 or P<0.05), and the co-treatment of 3000 µ mol/L AC with 1 µ mol/L Rg1 significantly decreased the level of intracellular Ca2+ via regulating Nav1.5, RyR2 expression (P<0.01). For damaged NRCMs, 1500 µ mol/L AC aggravated cell damage (P<0.01), and 0.1 and 0.001 µ mol/L AC showed moderate protective effect. Compared with AC used alone, the co-treatment of Rg1 with AC reduced the cell damage, 0.1 µ mol/L AC with 1 µ mol/L Rg1 significantly inhibited the level of intracellular Na+ (P<0.05), 1500 µ mol/L AC with 1 µ mol/L Rg1 significantly inhibited the level of intracellular K+ (P<0.01) via regulating Nav1.5, Kv4.2, RyR2 expressions in impaired NRCMs. CONCLUSION: Rg1 inhibited the cardiotoxicity and enhanced the cardiotonic effect of AC via regulating the ion channels pathway of [Na+], [K+], and [Ca2+].


Assuntos
Ginsenosídeos , Aconitina/farmacologia , Animais , Apoptose , Cardiotônicos/farmacologia , Cardiotoxicidade/tratamento farmacológico , Sobrevivência Celular , Ginsenosídeos/farmacologia , Ratos
16.
Toxicol Appl Pharmacol ; 445: 116024, 2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35439480

RESUMO

Bulleyaconitine A (BLA), a toxic Aconitum alkaloid, is a potent analgesic that is clinically applied to treat rheumatoid arthritis, osteoarthritis and lumbosacral pain. BLA-related adverse reactions occur frequently, but whether the underlying mechanism is related to its metabolic interplay with drug-metabolizing enzymes remains unclear. This study aimed to elucidate the metabolic characteristics of BLA and its affinity action and mechanism to drug-metabolizing enzymes to reveal whether BLA-related adverse reactions are modulated by enzymes. After incubation with human liver microsomes and recombinant human cytochrome P450 enzymes, we found that BLA was predominantly metabolized by CYP3A, in which CYP3A4 had an almost absolute advantage. In vitro, the CYP3A4 inhibitor ketoconazole noticeably suppressed the metabolism of BLA. In vivo, the AUC0-∞ values, cardiotoxicity and neurotoxicity of BLA in Cyp3a-inhibited mice were all obviously enhanced (P < 0.05) compared to those in normal mice. In the enzyme kinetics study, BLA was found to be a sensitive substrate of CYP3A4, and its characteristics were consistent with substrate inhibition (Km = 39.36 ± 10.47 µmol/L, Ks = 83.42 ± 19.65 µmol/L). BLA was further identified to be a competitive inhibitor of CYP3A4 with Ki = 53.64 µmol/L, since the intrinsic clearance (CLint) of midazolam, a selective CYP3A4 substrate, decreased significantly (P < 0.05) when incubated with BLA together in mouse liver microsomes. Overall, BLA is a sensitive substrate and competitive inhibitor of CYP3A4, and clinical adverse reactions of BLA may mechanistically related to the CYP3A4-mediated drug-drug interactions.


Assuntos
Aconitina , Citocromo P-450 CYP3A , Proteínas de Membrana , Microssomos Hepáticos , Proteínas de Saccharomyces cerevisiae , Aconitina/análogos & derivados , Aconitina/farmacologia , Animais , Citocromo P-450 CYP3A/metabolismo , Interações Medicamentosas , Cetoconazol/farmacologia , Proteínas de Membrana/farmacologia , Camundongos , Microssomos Hepáticos/metabolismo , Proteínas de Saccharomyces cerevisiae/farmacologia
17.
Mar Drugs ; 20(3)2022 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-35323499

RESUMO

The α7 nicotinic acetylcholine receptor (nAChR) is widely distributed in the central and peripheral nervous systems and is closely related to a variety of nervous system diseases and inflammatory responses. The α7 nAChR subtype plays a vital role in the cholinergic anti-inflammatory pathway. In vivo, ACh released from nerve endings stimulates α7 nAChR on macrophages to regulate the NF-κB and JAK2/STAT3 signaling pathways, thereby inhibiting the production and release of downstream proinflammatory cytokines and chemokines. Despite a considerable level of recent research on α7 nAChR-mediated immune responses, much is still unknown. In this study, we used an agonist (PNU282987) and antagonists (MLA and α-conotoxin [A10L]PnIA) of α7 nAChR as pharmacological tools to identify the molecular mechanism of the α7 nAChR-mediated cholinergic anti-inflammatory pathway in RAW264.7 mouse macrophages. The results of quantitative PCR, ELISAs, and transcriptome analysis were combined to clarify the function of α7 nAChR regulation in the inflammatory response. Our findings indicate that the agonist PNU282987 significantly reduced the expression of the IL-6 gene and protein in inflammatory macrophages to attenuate the inflammatory response, but the antagonists MLA and α-conotoxin [A10L]PnIA had the opposite effects. Neither the agonist nor antagonists of α7 nAChR changed the expression level of the α7 nAChR subunit gene; they only regulated receptor function. This study provides a reference and scientific basis for the discovery of novel α7 nAChR agonists and their anti-inflammatory applications in the future.


Assuntos
Aconitina/análogos & derivados , Anti-Inflamatórios/farmacologia , Benzamidas/farmacologia , Compostos Bicíclicos com Pontes/farmacologia , Conotoxinas/farmacologia , Agonistas Nicotínicos/farmacologia , Antagonistas Nicotínicos/farmacologia , Receptor Nicotínico de Acetilcolina alfa7/agonistas , Receptor Nicotínico de Acetilcolina alfa7/antagonistas & inibidores , Aconitina/farmacologia , Animais , Sobrevivência Celular/efeitos dos fármacos , Citocinas/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Interleucina-6/genética , Interleucina-6/metabolismo , Lipopolissacarídeos/farmacologia , Camundongos , Células RAW 264.7 , Receptor Nicotínico de Acetilcolina alfa7/genética
18.
Sci Rep ; 12(1): 54, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34997096

RESUMO

Ulcerative colitis (UC) is a chronic inflammatory bowel disease. Several studies have demonstrated that α7 nicotinic acetylcholine receptors (α7nAChRs) exert anti-inflammatory effects on immune cells and nicotine suppress UC onset and relapse. Plasmacytoid dendritic cells (pDCs) reportedly accumulate in the colon of UC patients. Therefore, we investigated the pathophysiological roles of α7nAChRs on pDCs in the pathology of UC using oxazolone (OXZ)-induced Th2-type colitis with BALB/c mice. 2-deoxy-D-glucose, a central vagal stimulant suppressed OXZ colitis, and nicotine also ameliorated OXZ colitis with suppressing Th2 cytokines, which was reversed by α7nAChR antagonist methyllycaconitine. Additionally, α7nAChRs were expressed on pDCs, which were located very close to cholinergic nerve fibers in the colon of OXZ mice. Furthermore, nicotine suppressed CCL21-induced bone marrow-derived pDC migration due to Rac 1 inactivation, which was reversed by methyllycaconitine, a JAK2 inhibitor AG490 or caspase-3 inhibitor AZ-10417808. CCL21 was mainly expressed in the isolated lymphoid follicles (ILFs) of the colon during OXZ colitis. The therapeutic effect of cholinergic pathway on OXZ colitis probably through α7nAChRs on pDCs were attributed to the suppression of pDC migration toward the ILFs. Therefore, the activation of α7nAChRs has innovative therapeutic potential for the treatment of UC.


Assuntos
Neurônios Colinérgicos/efeitos dos fármacos , Colite Ulcerativa/tratamento farmacológico , Células Dendríticas/efeitos dos fármacos , Neuroimunomodulação , Células Th2/metabolismo , Aconitina/análogos & derivados , Aconitina/farmacologia , Aconitina/uso terapêutico , Animais , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Caspase 3/metabolismo , Inibidores de Caspase/farmacologia , Inibidores de Caspase/uso terapêutico , Estimulantes do Sistema Nervoso Central/farmacologia , Estimulantes do Sistema Nervoso Central/uso terapêutico , Colite Ulcerativa/induzido quimicamente , Colo/metabolismo , Células Dendríticas/metabolismo , Desoxiglucose/farmacologia , Desoxiglucose/uso terapêutico , Modelos Animais de Doenças , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Janus Quinase 2/metabolismo , Camundongos Endogâmicos BALB C , Neuropeptídeos/metabolismo , Nicotina/farmacologia , Nicotina/uso terapêutico , Oxazolona/toxicidade , Fator de Transcrição STAT3/metabolismo , Células Th2/efeitos dos fármacos , Tirfostinas/farmacologia , Tirfostinas/uso terapêutico , Nervo Vago/efeitos dos fármacos , Receptor Nicotínico de Acetilcolina alfa7/agonistas , Receptor Nicotínico de Acetilcolina alfa7/antagonistas & inibidores , Receptor Nicotínico de Acetilcolina alfa7/genética , Receptor Nicotínico de Acetilcolina alfa7/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo
19.
Naunyn Schmiedebergs Arch Pharmacol ; 395(1): 65-76, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34727218

RESUMO

Aconitine linoleate (1) is a lipo-diterpenoid alkaloid, isolated from Aconitum sinchiangense W. T. Wang. The study aimed at investigating the anti-proliferative efficacy and the underlying mechanisms of 1 against MCF-7 and MCF-7/ADR cells, as well as obvious the safety evaluation in vivo. The cytotoxic activities of 1 were measured in vitro. Also, we investigated the latent mechanism of 1 by cell cycle analysis in MCF-7/ADR cells and topo I and topo IIα inhibition assay. Molecular docking is done by Discovery Studio 3.5 and Autodock vina 1.1.2. Finally, the acute toxicity of 1 was detected on mice. 1 exhibited significant antitumor activity against both MCF-7 and MCF-7/ADR cells, with IC50 values of 7.58 and 7.02 µM, which is 2.38 times and 5.05 times more active, respectively than etoposide in both cell lines, and being 9.63 times more active than Adriamycin in MCF-7/ADR cell lines. The molecular docking and the topo inhibition test found that it is a selective inhibitor of topoisomerase IIα. Moreover, activation of the damage response pathway of the DNA leads to cell cycle arrest at the G0G1 phase. Furthermore, the in vivo acute toxicity of 1 in mice displayed lower toxicity than aconitine, with LD50 of 2.2 × 105 nmol/kg and only slight pathological changes in liver and lung tissue, 489 times safer than aconitine. In conclusion, compared with aconitine, 1 has more significant anti-proliferative activity against MCF-7 and MCF-7/ADR cells and greatly reduces in vivo toxicity, which suggests this kind of lipo-alkaloids is powerful and promising antitumor compounds for breast cancer.


Assuntos
Aconitina/farmacologia , Antibióticos Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Doxorrubicina/farmacologia , Aconitina/administração & dosagem , Aconitina/toxicidade , Aconitum/química , Animais , Animais não Endogâmicos , Proliferação de Células/efeitos dos fármacos , DNA Topoisomerases Tipo II , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Feminino , Humanos , Concentração Inibidora 50 , Ácido Linoleico/química , Células MCF-7 , Masculino , Camundongos , Simulação de Acoplamento Molecular , Células NIH 3T3 , Proteínas de Ligação a Poli-ADP-Ribose/antagonistas & inibidores
20.
Artigo em Inglês | WPRIM (Pacífico Ocidental) | ID: wpr-939791

RESUMO

OBJECTIVE@#To explore the synergic mechanism of ginsenoside Rg1 (Rg1) and aconitine (AC) by acting on normal neonatal rat cardiomyocytes (NRCMs) and pentobarbital sodium (PS)-induced damaged NRCMs.@*METHODS@#The toxic, non-toxic, and effective doses of AC and the most suitable compatibility concentration of Rg1 for both normal and damaged NRCMs exposed for 1 h were filtered out by 3- (4,5)-dimethylthiahiazo (-z-y1)-3,5-diphenytetrazoliumromide, respectively. Then, normal NRCMs or impaired NRCMs were treated with chosen concentrations of AC alone or in combination with Rg1 for 1 h, and the cellular activity, cellular ultrastructure, apoptosis, leakage of acid phosphatase (ACP) and lactate dehydrogenase (LDH), intracellular sodium ions [Na+], potassium ions [K+] and calcium ions [Ca2+] levels, and Nav1.5, Kv4.2, and RyR2 genes expressions in each group were examined.@*RESULTS@#For normal NRCMs, 3000 µ mol/L AC significantly inhibited cell viability (P<0.01), promoted cell apoptosis, and damaged cell structures (P<0.05), while other doses of AC lower than 3000 µ mol/L and the combinations of AC and Rg1 had little toxicity on NRCMs. Compared with AC acting on NRCMs alone, the co-treatment of 3000 and 10 µ mol/L AC with 1 µ mol/L Rg1 significantly decreased the level of intracellular Ca2+ (P<0.01 or P<0.05), and the co-treatment of 3000 µ mol/L AC with 1 µ mol/L Rg1 significantly decreased the level of intracellular Ca2+ via regulating Nav1.5, RyR2 expression (P<0.01). For damaged NRCMs, 1500 µ mol/L AC aggravated cell damage (P<0.01), and 0.1 and 0.001 µ mol/L AC showed moderate protective effect. Compared with AC used alone, the co-treatment of Rg1 with AC reduced the cell damage, 0.1 µ mol/L AC with 1 µ mol/L Rg1 significantly inhibited the level of intracellular Na+ (P<0.05), 1500 µ mol/L AC with 1 µ mol/L Rg1 significantly inhibited the level of intracellular K+ (P<0.01) via regulating Nav1.5, Kv4.2, RyR2 expressions in impaired NRCMs.@*CONCLUSION@#Rg1 inhibited the cardiotoxicity and enhanced the cardiotonic effect of AC via regulating the ion channels pathway of [Na+], [K+], and [Ca2+].


Assuntos
Animais , Ratos , Aconitina/farmacologia , Apoptose , Cardiotônicos/farmacologia , Cardiotoxicidade/tratamento farmacológico , Sobrevivência Celular , Ginsenosídeos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...